Download EDS Parametric Modeling and Tracking of Audio Signals
Despite the success of parametric modeling in various fields of digital signal processing, the Fourier analysis remains a prominent tool for many audio applications. This paper aims at demonstrating the usefulness of the Exponentially Damped Sinusoidal (EDS) model both for analysis/synthesis and tracking purposes.
Download Multipitch Estimation of Quasi-Harmonic Sounds in Colored Noise
This paper proposes a new multipitch estimator based on a likelihood maximization principle. For each tone, a sinusoidal model is assumed with a colored, Moving-Average, background noise and an autoregressive spectral envelope for the overtones. A monopitch estimator is derived following a Weighted Maximum Likelihood principle and leads to find the fundamental frequency (F0 ) which jointly maximally flattens the noise spectrum and the sinusoidal spectrum. The multipitch estimator is obtained by extending the method for jointly estimating multiple F0 ’s. An application to piano tones is presented, which takes into account the inharmonicity of the overtone series for this instrument.
Download Time-Dependent Parametric and Harmonic Templates in Non-Negative Matrix Factorization
This paper presents a new method to decompose musical spectrograms derived from Non-negative Matrix Factorization (NMF). This method uses time-varying harmonic templates (atoms) which are parametric: these atoms correspond to musical notes. Templates are synthesized from the values of the parameters which are learnt in an NMF framework. This parameterization permits to accurately model some musical effects (such as vibrato) which are inaccurately modeled by NMF.
Download The DESAM Toolbox: Spectral Analysis of Musical Audio
In this paper is presented the DESAM Toolbox, a set of Matlab functions dedicated to the estimation of widely used spectral models for music signals. Although those models can be used in Music Information Retrieval (MIR) tasks, the core functions of the toolbox do not focus on any specific application. It is rather aimed at providing a range of state-of-the-art signal processing tools that decompose music files according to different signal models, giving rise to different “mid-level” representations. After motivating the need for such a toolbox, this paper offers an overview of the overall organization of the toolbox, and describes all available functionalities.
Download Evaluation of a Stochastic Reverberation Model Based on the Source Image Principle
Various audio signal processing applications, such as source separation and dereverberation, require an accurate mathematical modeling of the input audio data. In the literature, many works have focused on source signal modeling, while the reverberation model is often kept very simplistic. This paper aims to investigate a stochastic room impulse response model presented in a previous article: this model is first adapted to discrete time, then we propose a parametric estimation algorithm, that we evaluate experimentally. Our results show that this algorithm is able to efficiently estimate the model parameters, in various experimental settings (various signal-to-noise ratios and absorption coefficients of the room walls).
Download Damped Chirp Mixture Estimation via Nonlinear Bayesian Regression
Estimating mixtures of damped chirp sinusoids in noise is a problem that affects audio analysis, coding, and synthesis applications. Phase-based non-stationary parameter estimators assume that sinusoids can be resolved in the Fourier transform domain, whereas high-resolution methods estimate superimposed components with accuracy close to the theoretical limits, but only for sinusoids with constant frequencies. We present a new method for estimating the parameters of superimposed damped chirps that has an accuracy competitive with existing non-stationary estimators but also has a high-resolution like subspace techniques. After providing the analytical expression for a Gaussian-windowed damped chirp signal’s Fourier transform, we propose an efficient variational EM algorithm for nonlinear Bayesian regression that jointly estimates the amplitudes, phases, frequencies, chirp rates, and decay rates of multiple non-stationary components that may be obfuscated under the same local maximum in the frequency spectrum. Quantitative results show that the new method not only has an estimation accuracy that is close to the Cramér-Rao bound, but also a high resolution that outperforms the state-of-the-art.